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Abstract—Neural Networks, especially architectures such as
Graph Neural Networks, Spiking Neural Networks, Multi-
layer Perceptron Networks, Transformers, and methods such
as Support Vector Machines, have shown significant influence
in areas such as natural language processing, computer vision
and time series analysis. This paper presents a systematic
and comprehensive analysis of energy consumption across
these architectures, executed on hardware platforms such as
the CPU, GPU, and FPGA. Preliminary findings show that
deploying ML algorithms on FPGAs, especially Transformer
models in natural language processing tasks, consumes less
energy than CPUs and GPUs. Furthermore, spiking neural
networks exhibit distinct energy consumption patterns as a
result of recurrent weight updates. This research introduces
a refined energy estimation approach, applicable to custom
accelerators and specialized designs. It presents a compre-
hensive energy footprint analysis across three domains: ML
algorithms, hardware systems, and applications, providing
insights for optimizing energy use in diverse ML methods
across heterogeneous hardware and applications.
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1. Introduction

In recent years, artificial intelligence (AI) has witnessed
remarkable advancements, particularly in the fields of image
recognition, natural language processing (NLP), and au-
tonomous systems. Recent advances can be attributed to the
availability of significant data, access to compute-intensive
hardware driven by technology scaling, the development of
tools and algorithms that are accurate and scale with the size
of the problem, and tools that reduce the latency of the de-
velopment cycle (1). However, as these algorithms become

increasingly complex and computationally demanding, it is
crucial to consider the energy implications associated with
their execution on different architectures implemented on
hardware. The energy consumption of computing systems
has garnered significant attention due to its environmental
and economic implications. As demand for AI applications
continues to increase, the energy required in hardware plat-
forms becomes a critical factor to consider(2). Understand-
ing the energy consumption patterns of these platforms
that run various algorithms is essential for designing effi-
cient and sustainable large-scale AI systems. This analysis
aims to investigate the energy consumption characteristics
of various machine learning algorithms during inference
when deployed on various Central Processing Unit (CPU),
Graphics Processing Unit (GPU), and Field-Programmable
Gate Arrays (FPGAs). Although training is reported to be
more energy-intensive than inference, given the large search
space and real-world applications, we first study inference.
By quantifying energy consumption and comparing results
between different platforms, we can gain insights into their
respective efficiencies and identify potential areas for im-
provement. Furthermore, this analysis can guide developers,
researchers, and system designers in selecting the most ap-
propriate hardware platform based on energy considerations
for their specific algorithm applications. Our reason for
including FPGAs in this analysis is due to their inherent
advantages of configurability, adaptability, and parallelism,
which are essential for achieving the desired throughput
rates in specific applications (3; 4). Concurrently, there
has been a notable advancement in tool chains designed
for FPGA-based application development, expanding their
accessibility and utility within the developer community (5).
To achieve the best performance and energy efficiency, many
researchers have focused on building custom Applied Spe-
cific Integrated Circuits (ASICs) for accelerating network
inference workloads. Despite being an attractive solution,
ASICs cannot offer sufficient flexibility to accommodate
the rapid evolution of machine learning algorithms (6). The
main contributions of this paper are:
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• Analysis of inference energy efficiency of various ma-
chine learning algorithms for three different types of
applications on CPU, GPU, FPGA.

• Evaluation of the thermal impact of different ML
topologies on CPU, GPU and FPGA.

The rest of the paper is organized as follows: Section 2
discusses the methodology to estimate energy, performance,
and temperature across applications and hardware. Section
3 outlines the datasets used. Section 4 describes the ma-
chine learning algorithms evaluated. Section 5 focuses on
hardware architectures and benchmarks. Section 6 evaluates
the energy and thermal performance of the algorithms on the
hardware. Section 7 summarizes key findings, emphasizing
the importance of co-design in AI/ML for energy efficiency
and suggesting future research directions.

Figure 1: A flowchart of the analysis performed across three
dimensions i.e. three types of applications simulated with six
machine learning algorithms realized on three types of hard-
ware architectures. Note: Graph Neural Networks (GNN),
Spiking Neural Networks (SNN), Multi-layer Perceptron
(MLP), Convolutional Neural Networks (CNN), and Support
Vector Machines (SVM).

2. Related Work

The pursuit of energy-efficient computing has become a
paramount concern in the field of ML and AI. As com-
putational demands escalate, the energy consumption of
ML models, particularly those involving deep learning, has
come under scrutiny. This section provides an overview
of the current state of the art in energy estimation tools
and methodologies, underscoring the limitations of existing
approaches and the necessity for versatile tools that span
across various computing layers.

Energy estimation in computing systems is a critical area
of research, and several tools have been developed to mea-
sure and analyze power consumption. These tools vary in
their approach, accuracy, and the level of detail they provide.
Marcher and Wattch, for instance, are architectural-level
power analysis tools that provide insights into the energy
profiles of processor architectures (7; 8). Power API offers
a standardized approach to power measurement, enabling the

integration of power-aware metrics in performance analysis
(9). Accelergy (10) is a more recent tool that focuses on the
energy estimation of accelerator designs, while ScaleSim
(11) is tailored for the analysis of systolic arrays commonly
used in deep learning accelerators.

Despite their contributions, these tools exhibit limita-
tions, particularly in their flexibility and applicability across
different computing layers. Many are confined to specific
hardware architectures or lack the granularity required for
a comprehensive analysis of complex ML models. Further-
more, they often do not account for the dynamic nature of
ML workloads, leading to less accurate energy estimates.

The potential of top-down and bottom-up analysis in en-
ergy estimation is significant. Top-down approaches, which
start at the application layer and work downwards, provide a
macroscopic view of energy consumption, often relying on
performance counters and software-level indicators. Bottom-
up methods, conversely, begin at the hardware layer, offering
a microscopic perspective that can capture the nuances of
energy usage at the component level.

The literature presents a wealth of research that ad-
dresses the energy efficiency of ML models. (12) provides
a comprehensive estimation of energy consumption in ML,
offering a foundational understanding of the factors that
influence energy efficiency in ML computations. Li, (13)
evaluates the energy efficiency of deep convolutional neural
networks on CPUs and GPUs, highlighting the disparities
in energy usage across different hardware platforms (14).

3. Methodology

To evaluate the energy, performance and temperature
estimations of ML algorithms, the approach is categorized
into three dimensions, namely i) applications, ii) algorithms,
and iii) hardware architectures as shown in Figure 1. Appli-
cation dimension is categorized further into computer vision,
natural language processing, and time-series data which are
simulated using six different types of ML algorithms (graph
neural network (GNN), spiking neural network(SNN), multi-
layer perceptron (MLP), transformers, convolutional neural
network (CNN) and support vector machine (SVM)) on
CPU, GPU and FPGA. Energy estimation methodologies
generally fall into either top-down or bottom-up categories.
While the bottom-up method relies on a statistical model
that integrates workload analysis and power consumption,
the former approach zeros in on power dissipation during
algorithm simulations.

• Top-down approach: Top-down approach estimates
energy by executing the algorithm/program on the
system which tends to produce accurate results. This
approach is limited by the system’s scalability and its
ability to perform various tasks.

• Bottom-up approach: Bottom-up approach is based
on a statistical model that integrates workload analysis
and power consumption metrics based on an estimated
number of instructions and operations. The essential
advantage of this approach allows the developer to es-
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Figure 2: Illustration of the comprehensive methodology employed to evaluate the energy efficiency of machine learning
algorithms. This figure delineates the process of simulating a software-based ML model across diverse hardware architectures.
The analysis is conducted using a top-down approach, which begins with the examination of the overall system performance
and energy consumption, and then delves into the finer details of specific components. This method allows for a
comprehensive understanding of how the system operates as a whole, and how its various parts contribute to the total
energy usage. The figure highlights key metrics and benchmarks used in the evaluation, demonstrating how different hardware
configurations impact the energy consumption of the ML algorithm. This comparative analysis is crucial for identifying
energy bottlenecks and optimizing ML deployments for sustainable and energy-conscious computing.

timate the energy usage of a program without executing
it (15).

To conduct our evaluation, we utilized two distinct meth-
ods. Method 1, the Direct Measurement Method, employs
hardware tools like NVIDIA SMI and Intel’s Power Gadget
for real-time monitoring of GPUs and CPUs, respectively.
This method is aligned with the top-down approach, cap-
turing peak power to estimate the system’s overall energy
during algorithm execution.

Method 2, the Estimation Method, uses the software
tool PyJoules, which utilizes Intel’s Running Average Power
Limit (RAPL) interface for energy estimation. This method,
resonating with the bottom-up approach, calculates average
power to determine the total energy expenditure, enabling
energy consumption estimation based on the system’s be-
havior and instantaneous power.

For FPGAs, power consumption assessment was con-
ducted using proprietary software tools provided by FPGA
vendors. These tools offer precise power analysis by simu-
lating the FPGA’s power consumption under varied opera-
tional conditions, accounting for design specifics, resource
utilization, clock frequencies, and I/O activities to generate
detailed power reports.

4. Applications

In the following section, we summarize the key aspects
of the different applications that were used to estimate en-
ergy requirements. The first application is based on Natural
Language Processing (NLP), given the recent reported suc-
cesses of AI platforms such as ChatGPT, Bard, and Llama.
The second application is based on Computer Vision (CV),
given its wide ranging applications from automated vehicles
to medical applications. The third application is based on
time-series (TS), as it enables potential linking to domains
ranging from particle detectors to analogue sensing. Each of
the applications and the datasets used are briefly discussed
in the following sections.

4.1. Natural Language Processing

Our study used the NLP Question/Answer dataset,
a comprehensive assembly of question-answer pairs de-
signed for the purpose of exploring Question-to-Answer
and Answer-to-Question tasks in hardware. This dataset set
the scope for assessing the performance and accuracy of
natural language processing techniques, with the answers
being generated from the text of Wikipedia articles. The
dataset is distributed across three files, each pertaining to
a particular academic year: S08, S09, and S10. Together,
they encompassed a vast textual expanse of 690,000 cleaned
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words extracted from Wikipedia, which served as the raw
material for the formulation of the questions (16). The or-
ganization and breadth of the NLP Question/Answer dataset
thus provide us with a suitable test suite for analyzing NLP
techniques, particularly in different hardware architectures.

4.2. Computer Vision

In the field of computer vision, CIFAR-10 (17) and
MNIST (18) are widely recognized benchmarking datasets
in image classification tasks. The first dataset consists of a
collection of 60,000 color images, evenly distributed across
10 different classes. The classes encompass a diverse range
of objects, including airplanes, automobiles, birds, cats, deer,
and horses. Each image in the dataset measures 32x32
pixels, and each color image is represented in the standard
Red-Green-Blue (RGB) format. The dataset is split into a
training set of 50,000 images and a test set of 10,000 images,
each set containing an equal number of images from every
class. This balanced distribution ensures the absence of any
bias towards a particular class during model training or
testing.(19). Compact yet diverse collection of CIFAR-10
images help in comprehensive evaluation and comparison
of machine learning algorithms, particularly those that are
specifically applicable to image classification tasks. The low
resolution and relatively small size of this dataset make
it feasible for rapid prototyping, especially in evaluating
multiple complex computer vision algorithms.

4.3. Time Series

For time-series, we utilized a dataset derived from X-
ray radiography of the laser powder bed fusion process,
specifically for aluminum. This dataset, chronologically or-
dered, captures the dynamic evolution of a fusion process
over time. Procured from the SSRL and originating from a
beamline (20), this dataset’s temporal nature is evident in its
structure, with each frame representing a specific timestamp
in the fusion process. The implementation focuses on dis-
cerning and documenting pivotal characteristics of the data:
total number of time-stamped frames, height, and width of
each image, and computations related to data size.

5. Machine Learning Algorithms

In this section, we briefly discuss the six different types
of machine learning algorithms (“software architectures”
that were used to estimate energy costs on different hardware
platforms. In addition to the five of them, which are based
on neural network (NN) frameworks, the last one (Support
Vector Machines) are from a kernel-based formalism. The
ML algorithms were chosen based on computational com-
plexity and their relevance to current applications and are
depicted in Figure 3. A brief description of these algorithms
and their use in our analysis are summarized below.

5.1. Graph Neural Network (GNN)

GNNs are used for a variety of application domains
given their unstructured architecture and adaptable topolo-
gies. The GNN architecture consists of four graph convolu-
tion layers that use a ReLU activation function. Within each
application, entities are graphically represented, wherein
nodes and edges are contextualized according to the inherent
data structure. During inference, entities are subjected to
requisite pre-processing and graph conversion, followed by
predictions and comparisons. Traditionally, words or sen-
tences are processed with tokenization and embedding in
NLP, while images are treated as 2D or 3D tensors in
computer vision, and time-series data are analyzed as an
array of sequential data points (21; 22; 23).

5.2. Spiking Neural Network (SNN)

SNNs have become very popular given their sparseness
(leading to lower memory requirements) and the flexibility
to use temporal dimensions to encode information. Typically
the SNNs use a particular type of neuron model called
Leaky Integrate and Fire(LIF). This LIF model effectively
captures the transient nature of neuronal activity, offering
a more biologically plausible representation of neural pro-
cessing compared to traditional neural network models. It
embodies the essence of SNNs, where the temporal aspect
of information processing is as critical as the spatial one.
To train the SNN, event-driven back propagation (eRBP)
learning mechanism is used (24; 25). The eRBP algorithm
uses an error-modulated synaptic plasticity to learn deep rep-
resentations, which are shown to be promising in classifying
images.

5.3. Multi-layer perceptron (MLP)

A Multi-Layer Perceptron (MLP) is a class of feedfor-
ward artificial neural networks, characterized by the pres-
ence of multiple layers of nodes, including an input layer,
one or more hidden layers, and an output layer. The in-
clusion of non-linear activation functions, such as the Sig-
moid or Rectified Linear Unit (ReLU), within hidden layers
enables MLP to model complex, non-linear relationships
within data, rendering it suitable for tasks like classifica-
tion, regression, and pattern recognition. In this context,
we evaluate an Extreme Learning Machine (ELM) model,
which is a hardware-friendly MLP algorithm for supervised
learning tasks (26; 27). ELM is a single-layer feed forward
neural network that randomly initializes the input-to-hidden
layer weights and analytically calculates the output weights,
bypassing the need for an iterative optimization process like
backpropagation. This reduces the scope of applications for
ELM models, especially for complex problems (28; 29).

5.4. Transformer

Transformers are based on long-range association of
words used in languages (30). Their applications have been



PREPRIN
T

Figure 3: Comparative analysis of six distinct machine learning algorithms to assess their energy consumption when
simulated on various hardware platforms. This figure presents a side-by-side comparison of classification, regression,
clustering, dimensionality reduction, ensemble methods, and neural networks, highlighting the energy costs associated
with each algorithm type. The comparison takes into account the computational complexity, memory requirements, and
processing power needed for each algorithm, providing insights into the energy efficiency of different ML approaches
when deployed in hardware. This evaluation is critical for understanding the trade-offs between algorithmic performance
and energy expenditure, guiding the selection of the most energy-efficient algorithms for practical applications in energy-
constrained environments.

demonstrated to be effective in language-to-language trans-
lation and to form contextual texts without the need for
recurrence and convolution. We apply transformer-based
architectures, which have been developed for specific do-
mains: Vision Transformer (ViT) (31) for image processing,
DistilBERT (32) for textual analysis, and we use the stan-
dard transformer (30) for time-series data interpretation, all
developed using a specialized TensorFlow framework. For
image processing tasks, the CIFAR-10 dataset undergoes
standard pre-processing techniques, including normalization
and resizing. The ViT architecture is delineated by a series
of layers: a patch extraction mechanism, an embedding
projection, multi-head attention modules, and finally a fully
connected layer. In particular, the sequence of image patches
is analogous to a sequence of tokens in textual data. In
the textual analysis domain, we employ the pre-trained Dis-
tilBERT architecture, a streamlined variant of the original
BERT model, renowned for its computational efficiency
without compromising performance significantly. For time-
series data analysis, a canonical transformer model is uti-
lized, adept at extracting features from temporal patterns and
dependencies.

5.5. Convolutional Neural Network (CNN)

CNNs were first introduced 1990, inspired by neocogni-
tron proposed by (33; 34). CNNs models incorporate convo-

lution and backpropagation and were developed to recognize
images efficiently without overfitting. We used ResNet-18 in
this study, which is a type of deep CNN architecture. In this
model, residual learning introduces “skip connections” in
the architecture, where the output of one layer is connected
to the input of another layer that is not adjacent to it.
The information transfer to non-adjacent layer by bypassing
several layers allows amplification of gradients to address
the problem of vanishing gradients caused by multiplication
of small values. This makes it easier for the network to
learn identity mappings (functions that closely resemble the
identity function) and capture more complex features.

5.6. Support Vector Machine (SVM)

Support Vector Machine (SVM) algorithm is used for
classification and regression tasks, in fields such as image
classification, text classification, and informatics (35; 36;
37). The advantage of this algorithm is the intuitive and
physical basis for the classification of the data. They work
by finding the hyperplane that maximally separates different
classes in a dataset. Two parallel hyperplanes are constructed
on each side of the main hyperplane, and the algorithms
try to find the best-separating hyperplane that maximizes
the distance between secondary hyperplanes. The primary
objective of SVM is to find the optimal hyperplane that max-
imally separates the data into different classes. Separation is
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determined by a linear kernel function, which computes the
dot product between input vectors. The decision function
then weighs these computations using Lagrange multipliers,
considers the labels of the data points, and adjusts for bias
to make the final classification decision.

Table 1: Considerations of six machine learning algorithms
for hardware deployment.

Algorithm Advantages Drawbacks

GNN Non-Euclidean data, rela-
tionships in graphs

Computationally
expensive, preprocessing
needed

SNN Computationally less inten-
sive

asynchronous issues

MLP Simplicity, broad applica-
bility

No temporal behavior, lim-
ited to simple tasks

CNN Image processing, learns
spatial features

For grid-like data, adapta-
tion needed for non-image
tasks

SVM High-dimensional spaces,
memory efficient, versatile

Kernel choice, noise sensi-
tive, can be inefficient for
complex tasks.

Transformer Parallelizable, long-range
dependencies, powerful for
translation

Computationally intensive,
memory-hungry

Table 3 presents a comparative analysis of six prevalent
machine learning algorithms, delineating their respective
advantages and limitations with regard to deployment on
hardware platforms. The table serves as a succinct guide
for researchers and practitioners in selecting an appropriate
algorithm based on the specific requirements and constraints
of their computational tasks.

GNNs are lauded for their adeptness in handling non-
Euclidean data and elucidating relationships inherent in
graph structures. However, they are encumbered by their
computational demands and the prerequisite of extensive
preprocessing. SNNs are recognized for their computational
efficiency, particularly in scenarios that do not necessitate
synchronous processing. Nonetheless, they grapple with
challenges related to asynchronous computation which can
complicate their implementation. MLPs, with their simplic-
ity and wide-ranging applicability, offer a straightforward
solution for a multitude of tasks. Despite this, they are
impeded by their inability to model temporal dynamics
and are generally confined to simpler, non-sequential tasks.
CNNs are the cornerstone of image processing tasks, with
an innate capacity to learn spatial hierarchies of features.
However, their efficacy is predominantly limited to grid-
structured data, necessitating significant adaptation for non-
image related applications. SVMs excel in high-dimensional
spaces and are memory efficient, making them a versatile
choice for various applications. Their performance, however,
is contingent on the appropriate selection of kernel functions
and they exhibit sensitivity to noise. Additionally, SVMs
may falter in efficiency when tasked with more complex,
large-scale problems. Lastly, Transformers demonstrate ex-
ceptional performance in tasks involving long-range depen-
dencies, such as language translation, and are inherently
parallelizable. Their prowess, however, comes at the cost

of substantial computational and memory resources, which
may limit their practicality for resource-constrained environ-
ments. the table underscores the trade-offs between the com-
putational efficiency and the applicability of each algorithm.
It highlights the necessity for a careful consideration of the
specific characteristics of the task at hand, the available
computational resources, and the desired outcome when
selecting an algorithm for hardware deployment.

6. Hardware Architectures and Benchmarks

This section presents the physical implementations of the
architectures, highlighting the different approaches adopted
for the CPU, GPU, and FPGA platforms. As the underlying
hardware uses different process technologies, we specify the
attributes based on published data.

6.1. Central Processing Unit (CPU) and Graphical
Processing Unit (GPU) Systems

Our computational experiments leveraged the NVIDIA
GeForce RTX 3060/3090 GPU, an integral component of
NVIDIA’s Ampere architecture, renowned for its compu-
tational capabilities tailored for machine learning tasks. In
tandem, we utilized the Intel Core i9 12900H and AMD
threadripper 5995wx CPU, a product from Intel’s Alder
Lake series, ensuring optimal performance for tasks not
optimized for GPUs. The specifications of the CPU and
GPU systems are summarized below.

CPU:

• AMD threadripper 5995wx: Crafted on TSMC’s 7nm
technology node, it operates at 2.7GHz with 64 cores.

• Intel i9 12900HA: Based on an 8nm technology node,
it runs at 3.7GHz, featuring 14 cores.

GPU:

• NVIDIA RTX 3090: Operating on Samsung’s 8nm
Technology node at 1.7GHz, equipped with 10,496
CUDA cores.

• NVIDIA RTX 3060: Also from Samsung’s 8nm Tech-
nology node, operating at 900 MHz and houses 3,584
CUDA cores.

6.2. Field Programmable Gate Array (FPGA)

Our studies also extended to FPGA implementations.
The models were instantiated on the XCVC1902 and
Zynq®-7000 FPGA platform. Vivado Design Suite (version
2021.1 ) is used for the design and synthesis of digital
logic. The SNN model simulations were built on dedicated
Leaky Integrate-and-Fire (LIF) neuron models from previ-
ous work (38). The GNN model’s representation on the
FPGA involved nodes and edges as modules, interacting
through predefined logic. The Transformer model, with its
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Model Topology Input Output Hidden Others
SNN 784-200-10 784 10 200 -

CNN 128-[100-100-100]-300-10 128 10 [100-100-100]
300 (Dense),
128 (Convolutional),
300 (Sequential)

MLP 784-1000-10 784 10 1000 -

Transformer 3072-64-2048-1024-10 3072 10 - 64 (Attention),
2048, 1024 (Intermediate)

SVM 3072-10 3072 10 - -

GNN 3072-2048-1024-128-10 3072 10 - 2048 (Successive),
1024 (Successive), 128 (Successive)

Table 2: Detailed Machine Learning Model Topologies

intricate architecture, required multiple encoder and decoder
modules, processing input sequences concurrently. For the
SVM, specific hardware accelerators were designed to han-
dle high-dimensional vector computations efficiently. The
CNN implementation took advantage of the FPGA’s parallel
processing capabilities, allowing for simultaneous convolu-
tion operations across different layers. The MLP, which is
a basic neural network model, was slightly optimized (39).
The inherent capabilities of the FPGA ensured efficient, real-
time simulations of all these models, underscoring potential
avenues for scalability. The specification of the FPGA sys-
tem is summarized below.

FPGA:

• Zynq®-7000 series FPGA: Produced by AMD, it
incorporates an ARM A9 processor and 13,300 LUTs.

• AMD VCK190 board: Featuring the Versal AI Core
VC1902 device, it is equipped with 1.2 million LUTs.

Application-Specific Integrated Circuit:

• Loihi-2: Intel Labs’ Loihi 2, the advanced successor
to the original Loihi, represents a significant leap in
neuromorphic research technology. Unveiled in 2022,
this state-of-the-art research test chip is predicated
on an asynchronous SNN architecture. This design
facilitates adaptive, self-modifying, and event-driven
computations with fine-grained parallelism, thereby en-
hancing efficiency in both learning and inference tasks.
Constructed using Intel’s 4 process technology, Loihi 2
incorporates 128 neuromorphic cores, categorizing it as
a multi-core Integrated Circuit (IC). A notable innova-
tion in Loihi 2 is its bespoke programmable microcode
learning engine, which permits on-chip SNN training.
We intend to adhere to the protocols delineated in the
documentation for setting up and operating the Lava
extension for Loihi (lava-loihi) on the Intel Neuromor-
phic Research Cloud (vLab) systems (40; 41). Intel’s
research team, in their quest to leverage the capabilities
of the Loihi 2 system, employed standard modules
for network configuration within the Lava framework.
This study also aims to demystify the functionality of
the profiling tool integrated within Lava for Loihi 2.
The Loihi-2 chip, fabricated using ASIC technology,

utilizes a 7nm process. Intel, as the manufacturer of
this chip, has implemented the model using a fixed-
precision 32-bit format. Lava, an open-source software
library, is dedicated to the development of algorithms
tailored for neuromorphic computing. It significantly
eases the creation of neuromorphic algorithms by of-
fering an intuitive Python interface, allowing for the
assembly of essential components. Lava not only fa-
cilitates the testing and execution of these algorithms
on conventional von Neumann architectures, such as
CPUs, but also ensures their seamless deployment on
neuromorphic processors like Intel Loihi 1/2, capitaliz-
ing on their speed and energy efficiency. Furthermore,
Lava is designed with versatility at its core, accom-
modating bespoke neuromorphic behavioral implemen-
tations and supporting novel hardware backends. The
application of Lava is twofold: it enables users to
construct intricate algorithms using existing resources
without necessitating an in-depth understanding of neu-
romorphic principles, thereby democratizing access to
this advanced computational paradigm (42).

7. Measurements and Analysis

This section delves into the methodologies employed for
measuring variables across the three application types, six
ML algorithms, and three hardware platforms. We present
the results of simulations, scaling of instruction numbers,
trends in energy consumption, and temperature profiles for
ML algorithms running on CPU, GPU, and FPGA systems.
The forthcoming analysis will elucidate the energy dynamics
and thermal behavior of these systems under computational
stress from various ML workloads.

Both the Direct Measurement and Estimation Methods
have their respective advantages and limitations. The for-
mer provides precise, direct measurements, while the latter
offers flexibility and ease of implementation, particularly
in systems lacking specific hardware tools. These methods
can also be applied in emulators for scenario analysis.
Researchers may select the method that best aligns with their
study’s needs and constraints. These methods are integral to
a tool currently under development and testing, promising
to enhance our understanding of energy efficiency in ML
applications.
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7.1. Model and Computational Complexity

The efficiency of an algorithm on a platform is evaluated
by determining the model complexity and computational
complexity of an algorithm for a specific size of each of the
applications. The model complexity defines the total num-
ber of parameters in the algorithm and the computational
complexity defines the total number of operations required
to perform one single inference where the total number of
operations in an algorithm is generalized to total number
of multiply and accumulate(MAC) operations which are
considered to be the fundamental operations required while
executing a machine learning algorithm. The total number
of MAC operations for six algorithms is calculated based
on the equations mentioned in Table 3. MAC operations in
an algorithm depend on the connection topology (the con-
nection network in the case of neural network algorithms)
and size of the algorithm since the total number of MAC
operations in the fully connected layer is equivalent to the
product of the number of input neurons(Nin) and number of
output neurons(Nout). However, CNN uses a kernel matrix
that is convoluted over the input neurons to produce the
output features. The resulting number of MAC operations is
indicated in the table where Kw,Kh are kernel width and
height, Cin is the number of input channels, Hout,Wout
are the height and width of output feature, and Cout is
the total number of output channels. Although the SNNs
share a structure similar to that of MLPs and CNNs, the
data is fed in the format of spike sequences, which adds an
additional term tsim (simulation time) to the computational
complexity. The number of MAC operations for SVM is
measured primarily on the basis of Nsv (number of support
vectors) and the dimensionality of the data. In the Trans-
former architecture, multiple layers encompass both multi-
head self-attention mechanisms and feed-forward networks.
Here, d represents the dimensionality of the model, while
sequencelength denotes the count of tokens in a given input
sequence. The term d×sequencelength captures the linear
transformations applied to both the input embeddings and
the output from the multi-head attention. Conversely, the
expression 2 × d × d corresponds to the weight matrices
utilized within the multi-head attention mechanism.

Table 3: Number of MAC operations in the neural algo-
rithms.

ML Algorithm # of MAC Ops

MLP Nin×Nout
Convolutional NN Kw×Kh×Cin×Hout×Wout×Cout
Spiking NN Nin×Nout× tsim
Graph NN Nin×Nout
SVM Nsv × Dimensionality
Transformers 2× d× d+ d× sequence length

Figure 4 illustrates the trends in the complexity of the
algorithms chosen for comparison. The computational com-
plexity and the model complexity are conditioned by the
network topologies which were chosen by normalizing the
algorithm performances over an application. Transformers

require a larger number of operations to perform a task com-
pared to their other counterparts followed by graph neural
networks and SVMs. Though the computational complexity
of spiking neural networks is moderate, the model complex-
ity is significantly lower than the other algorithm due to
the simulation time parameter which plays a critical role in
computing. Moreover, convolutional neural networks show a
similar trend as SNNs due to the weight-sharing mechanisms
where the kernel is connected to multiple neurons which
corresponds to the reduction in model complexity(43).

Energy/Op =
Energy per inference (J)

# of MAC operations
(1)

Throughput =
# of MACs

Latency (Simulation Time)
(2)

Simulation Time =
Total Inference Time

# of inference samples
(3)

Figure 4: The computational complexity of six ML algo-
rithms is defined by the total number of MAC operations
required to perform one single task.

Figure 5: Energy consumption to compute one MAC op-
eration in an ML algorithm, on three different types of
hardware.

In our calculation of the Multiply-Accumulate (MAC)
count for a neural network, we employed two libraries,
as referenced in (44; 45). These libraries make use of
the equations provided in Table 3 to determine computa-
tional complexity. This methodology enables us to gauge
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Figure 6: Comparison of energy efficiency, measured as
images processed per second per billion transistors, against
the energy required for one operation (Joules per operation)
across various computing hardware. This plot illustrates the
efficiency trade-offs between CPUs, GPUs, and FPGAs in
processing machine learning algorithms.

Figure 7: Comparison of energy consumption for computing
one MAC operation in a SNN algorithm for Computer Vi-
sion application across four different hardware types: CPU,
GPU, FPGA, and Loihi-2. The plot includes annotations
indicating the relative efficiency of each hardware compared
to Loihi-2.

the hardware platform’s performance through Equation 2,
derived from Equation 3. We have identified metrics such
as operations per second and energy per operation as potent
criteria for hardware evaluation. In this study, we exclusively
employ these two metrics for our evaluation.

7.2. Energy Estimates

To estimate the energy expended in the algorithms
to perform inference operations in different systems, we
adopted a top-down approach, as shown in Figure 1. We
simulated various ML algorithms across three applications

on CPU, GPU, and FPGA platforms. Tools such as Nvidia
SMI, Intel Power Gadget, PyJoules, and AMD Vivado were
used to evaluate the total energy cost of simulating each
algorithm. A crucial metric used for benchmarking efficacy
was the energy cost per MAC operation, which determines
an algorithm’s energy efficiency. This metric is illustrated
in Figure 6.

Preliminary findings indicate that of the systems that we
analyzed for the specific conditions, computer vision appli-
cations use lower energy compared to NLP and time-series
applications across all algorithms. SVMs require higher
energy given the complexity of the underlying algorithms.
Due to their simplicity, ELM algorithms exhibit an edge
over other algorithms on CPU and GPU by indicating
5% − 10% energy per operation compared to other algo-
rithms on CV and time-series applications. SNNs require
higher energy on the CPU and GPU since these models
operate sequentially. SNNs derive their primary advantages
from their event-driven nature and sparsity in the informa-
tion being processed, eliminating the need for continuous
computations. Furthermore, the information in the SNNs
is processed as spikes, allowing representation in a binary
format that enables hardware architectures to minimize the
use of multipliers(38). These optimizations were adapted in
the FPGA which resulted in 76× and 23× energy savings
compared to simulating the SNN on CPU and GPU, respec-
tively.

Additionally, in the context of CNNs applied to time
series, there is an additional computational demand for
non-linear functions per neuron. These non-linear functions,
while essential for enhancing the performance of neural
network, often come with a significant energy cost. It is
imperative to highlight that the energy implications of these
non-linear functions aren’t encapsulated when solely consid-
ering the total number of MAC operations, which explains
the higher energy cost per operation for CNN on time-series
data. In summary, the findings illustrate that FPGA archi-
tectures need lower energies when compared to CPUs and
GPUs within the realm of hardware platforms, while also
highlighting that transformers require the highest energy
among all machine learning algorithms. It is important to
note that as the models are scaled to larger problems with
complex tasks, these trends may change. Although these
findings are preliminary, they offer insights to address these
aspects with finer granularity in the future.

7.3. Thermal Analysis

There are trade-offs with high power density and ele-
vated operating temperatures, especially when considering
the compact form factor. Heat generated during operation
does not dissipate at a rate equal to its generation. This
leads to an increase in the junction temperature of the
system and, consequently, to a reduction in mean time to
failure (MTTF) and also to a higher leakage power (46).
Furthermore, the worst-case heating can cause significant
problems, ranging from circuit transient timing errors to
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(a) Peak Temperature (°C)

(b) Average Temperature (°C)

Figure 8: Peak and average junction temperature of CPU,
GPU, and FPGA for three neural networks on three different
applications. Red color indicates higher temperature while
blue indicates lower temperature.

complete catastrophic burnout, which makes the thermal
analysis of the ML algorithms an important criterion.

To assess the thermal implications, we employed Method
1 to gauge temperatures across various algorithm-hardware-
application pairings, encompassing NLP, CV, and Time-
series applications on both CPU and GPU platforms. Fig-
ure 8 visually represents the peak and average junction
temperatures of CPUs and GPUs while simulating GNN,
SNN, and Transformer algorithms executing three distinct
applications. Notably, the results reveal that when per-
forming NLP applications, Transformer algorithms register
temperatures approximately 10◦C to 20◦C higher on both
CPUs and GPUs compared to their counterparts, raising
concerns for users of large language models (LLMs). While
Transformers and other networks involve a relatively similar
number of operations, SNNs consistently exhibit consid-
erably lower temperatures. Furthermore, it’s worth noting
that the temperature increase on CPUs consistently exceeds
that on GPUs, regardless of the algorithm or application,
by a margin of 19◦C to 29◦C. This trend of transformers
exhibiting higher temperatures is also reflected in their
energy consumption, which can be attributed to a higher
number of MAC operations required to perform the tasks.
The junction temperature and the reported temperature can
be understood as approximations, derived from the on-chip
sensors. For the purpose of temperature monitoring, data
was collected using tools such as Nvidia-SMI for NVIDIA

GPUs and Intel Power Gadget for Intel processors. We
used two numerical quadrature methods, Simpson’s and
trapezoidal methods, when estimating temperatures from the
signals. This congruence suggests that the underlying com-
putational techniques of these methods mirror each other
closely. The temperature results, encapsulated within the
power reports, offer insights into the thermal dynamics of
the FPGA during the execution of specific tasks. The tem-
perature readings obtained from the FPGA’s on-chip sensors
are presented in the vendor software’s power report, which
meticulously records the junction temperatures during the
operation of the device. These readings are instrumental in
understanding the thermal characteristics of the FPGA under
different computational loads, providing a window into how
various machine learning algorithms influence the device’s
temperature. Incorporating these temperature results into our
analysis enhances the depth of our study, allowing us to
draw more nuanced conclusions about the energy efficiency
and thermal management of FPGAs in the context of ma-
chine learning. By benchmarking the thermal performance
of FPGAs against that of CPUs and GPUs, we can better
understand the trade-offs and advantages inherent in each
platform, guiding future design and deployment decisions
for energy-conscious machine learning applications.

8. Conclusion

Six widely used machine learning algorithms were sys-
tematically simulated on three predominant hardware plat-
forms: CPU, GPU, and FPGA. Complexity of these algo-
rithms on specific hardware based on the specific num-
ber of operations, energy based on the total number of
operations for a simulation, and the resulting temperature
profiles were estimated for three applications: Natural lan-
guage processing, computer vision, and time series analysis.
Our findings indicate that FPGAs are more energy efficient
when deploying any of the ML algorithms. This included
transformer models for NLP tasks, which are seen to be
energy intensive compared to other ML algorithms. As
expected, though CPUs are general-purpose and versatile,
they consume more energy due to their longer computation
times, memory accesses, and data communications. Our
thermal analysis illustrates significant temperature varia-
tions across different neural network algorithms/architec-
tures, with the Transformer model being notably energy
intensive depending on the specific application. From our
analysis, it is clear that a comprehensive energy estimation
tool for different systems, including custom accelerators and
application-specific designs, is needed to quantify the energy
and thermal dynamics of popular neural network algorithms.
As this is one of the first such studies, we expect to build
upon this analysis for more thorough extension to other ML
algorithms, different hardware platforms. We think that this
will help guide the development of energy-efficient systems
combining hardware and software for different applications,
as a framework for a sustainable co-design.
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Supplementary Material: Precision Compari-
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Supplementary Material: Machine Learning
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9.1. GNN

The aggregation and update functions are delineated in
Equation 4 and 5. In these equations, hv denotes the feature
vector of node v, N(v) signifies the neighbors of node
v, W represents the weight matrix, av is the aggregated
information derived from the neighbors of node v, and h′

v

is the updated feature vector of node v post-aggregation.
The aggregation function gathers information from a node’s
neighbors, typically using a weighted sum of their feature
vectors. The update function then refines the node’s feature
representation by combining its current features with the
aggregated information, often passed through a non-linear
activation function.

av =
∑

u∈N(v)

W · hu (4)

h′
v = ReLU(av + hv) (5)

9.2. SNN

The SNN architecture consists of two layers with hidden
layer size of 200 neurons modeled with leaky integrate and
fire units. The input images are rate encoded in a series
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of spike trains which are propagated to compute output
spikes. During training, the error current is calculated by
computing the difference between the rate encoded label
spikes and output spikes. This current and its inverse are
sent to two error encoding neurons which calculate the
false positive and false negative error spikes for the output
neurons respectively. The errors for the output layer weights
are computed directly using the error spikes, whereas the
error spikes are propagated with fixed random weights to
the hidden layer neurons.

I(t+ 1) = I(t) +
∆t

τsyn

(
N∑
j=1

wjSj(t)− I(t)

)
(6)

V (t+ 1) = V (t) +
∆t

τmem
(Vrest − V (t) + I(t)R) (7)

9.3. MLP

The ELM architecture in this study consists of 784 input
neurons, 2000 hidden layer neurons, and 10 output neurons
to classify MNIST images. Weight (W) is estimated as
shown in Equation 8 and 9 where H is the output of the
hidden layer, Y is the output activation, Ŷ are the output
labels and α is the learning rate.

∆W = α ∗ (Relu(H) ∗ error) (8)

error = (Y − Ŷ ) (9)

9.4. Transformer

The attention mechanism within the Transformer archi-
tecture discerns the significance of various segments of the
input data. This is achieved by initially converting the input,
X , into matrices representing query, key, and value through
the application of weight matrices, denoted as Wq, Wk,
and Wv. Subsequently, “attention scores” are derived by
computing the dot product of the query and key matrices,
followed by a scaling operation using

√
dk. These scores

highlight the degree of emphasis that each segment of the
input should be given. The culmination of this process is an
output that represents a weighted amalgamation of the value
matrix, contingent on the aforementioned attention scores.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (10)

Q = Wq ·X, K = Wk ·X, V = Wv ·X (11)

9.5. SVM

The linear kernel function and the decision function for
SVM with a linear kernel are shown in Equations 12 and 13,
respectively. In these equations, x and x′ are input vectors,
N represents the number of support vectors, αi denotes the
Lagrange multipliers, yi signifies the labels (either -1 or 1
for binary classification), xi are the support vectors, and b
is the bias term. However, the application of SVM is often
limited by the computational requirements of the algorithm,
particularly when working with large datasets.

K(x,x′) = x · x′ (12)

f(x) =

N∑
i=1

αiyixi · x+ b (13)
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Table 4: Specifications of the Hardware Devices Used in the Study

C
PU

G
PU

FP
G

A
A

SI
C

A
M

D
In

te
l

N
V

ID
IA

N
V

ID
IA

A
M

D
A

M
D

In
te

l
Sp

ec
ifi

ca
tio

n

M
od

el
R

yz
en

T
hr

ea
dr

ip
pe

r
59

95
W

X
C

or
e

i9
-1

29
00

H
A

G
eF

or
ce

R
T

X
30

90
G

eF
or

ce
R

T
X

30
60

Z
yn

q®
-7

00
0

se
ri

es
V

C
19

02
A

I
C

or
e

se
ri

es
L

oi
hi

2
Te

ch
no

lo
gy

N
od

e
7n

m
10

nm
8n

m
8n

m
28

nm
7n

m
7n

m
C

or
e

C
ou

nt
64

14
10

,4
96

3,
58

4
Si

ng
le

/D
ua

l-
co

re
-

12
8

Pr
ec

is
io

n
Fl

oa
t3

2
Fl

oa
t3

2
Fl

oa
t3

2
Fl

oa
t3

2
Fi

xe
d3

2
Fi

xe
d3

2
Fi

xe
d3

2
O

pe
ra

tio
n

Fr
eq

ue
nc

y
2.

7G
H

z
3.

7G
H

z
1.

7G
H

z
90

0M
H

z
10

0M
H

z
10

0M
H

z
V

ar
ia

bl
e

M
em

or
y

Te
ch

no
lo

gy
D

D
R

4
D

D
R

5
G

D
D

R
6X

G
D

D
R

6
D

D
R

3
D

D
R

4
O

n-
ch

ip
Pl

at
fo

rm
Ye

ar
s

20
22

20
21

20
21

20
21

20
18

20
22

20
22

M
ax

im
um

Po
w

er
28

0W
15

7W
36

5W
17

0W
?

18
0W

L
ow

Po
w

er



PREPRIN
T

Ta
bl

e
5:

C
om

pa
ri

so
n

of
en

er
gy

co
ns

um
pt

io
n

fo
r

co
m

pu
tin

g
sa

m
e

pr
ec

is
io

n
(F

lo
at

-3
2)

in
a

G
N

N
al

go
ri

th
m

fo
r

C
om

pu
te

r
V

is
io

n
ap

pl
ic

at
io

n
ac

ro
ss

fo
ur

di
ff

er
en

t
ha

rd
w

ar
e

ty
pe

s:
C

PU
,G

PU
,F

PG
A

.

Ty
pe

Pr
ec

is
io

n
M

A
C

s
(O

P)
Si

m
ul

at
io

n
Ti

m
e

(s
)

Po
w

er
(W

at
t)

T
hr

ou
gh

pu
t

(O
P/

s)
E

ne
rg

y
E

ffi
ci

en
cy

(J
ou

le
/O

ps
)

C
PU

Fl
oa

t3
2

8.
50

E
+0

7
0.

15
1

46
5.

63
E

+0
8

8.
17

E
-0

8
G

PU
Fl

oa
t3

2
8.

50
E

+0
7

0.
06

1
51

1.
39

E
+0

9
3.

66
E

-0
8

FP
G

A
Fl

oa
t3

2
8.

50
E

+0
7

0.
02

25
2

3.
78

E
+0

9
2.

56
E

-1
0

FP
G

A
Fi

xe
d3

2
8.

50
E

+0
7

0.
01

56
2

5.
45

E
+0

9
3.

67
E

-1
0


	Introduction
	Related Work
	Methodology
	Applications
	Natural Language Processing
	Computer Vision
	Time Series

	Machine Learning Algorithms
	Graph Neural Network (GNN)
	Spiking Neural Network (SNN)
	Multi-layer perceptron (MLP)
	 Transformer
	Convolutional Neural Network (CNN)
	Support Vector Machine (SVM)

	Hardware Architectures and Benchmarks
	Central Processing Unit (CPU) and Graphical Processing Unit (GPU) Systems
	Field Programmable Gate Array (FPGA)

	Measurements and Analysis
	Model and Computational Complexity
	Energy Estimates
	Thermal Analysis

	Conclusion
	Acknowledgements
	GNN
	SNN
	MLP
	Transformer
	SVM


